Blog Archives

Information Fluency Report: The Little Things


According to the Sardine Blog information fluency is:

“the ability to unconsciously and intuitively interpret information in all forms and formats in order to extract the essential knowledge, authenticate it, and perceive its meaning and significance.”

The blog continues by mentioning five key steps: asking good questions, acquiring appropriate information sources, analyzing the information quality, applying the information and finally assessing both process and product.

In my own words, I think of information fluency in the 21st century as the ability to wisely use all of the information that is available to us nowadays. I think memorizing most facts is obsolete when they are literally little more then a few clicks away from reach. Instead of having too little information, we have the opposite problem, which is why asking good questions, strong analytical skills and reflection are more critical then ever.

Application: The Little Things

Instead of doing a big flashy lesson/project on information fluency, I tried to incorporate information fluency into my class on a more daily (mundane?) basis. To me this is more meaningful.

When I first read the description for information fluencies one of the first things I noticed was the part about asking good questions. This really got me excited because I’ve read a lot of physics education research that shows how important the discourse between students in a physics classroom is. In my classroom, we do a lot of peer teaching using big whiteboards. After a group of students teaches the rest of the class an idea, the audience is expected to ask questions.

I’m continuing to work on encouraging students to ask three basic types of questions: understanding, extension, and Socratic. Understanding questions are the ones students understand and expect most readably. Extension questions are questions that build off the original questions. Right now, my students are generally only able to ask questions very closely related (i.e. what if the height was doubled?). I try to encourage students to ask more and more general questions. The last type of questions are the hardest: Socratic. It is so much easier in physics (and I suspect any subject) to have an answer then it is to understand why the answer is right. I once heard about a company that aimed to be able to answer “why?” 5 levels deep for major questions. That’s my goal for my physics students, although we are along way from reaching it. Currently I’m pleased if my students can go 1 level deep (i.e. they can explain the reasoning behind their answer, but can’t explain the explanation). Once in a while a student is able to go 2 levels deep and that is really great!

Another thing I noticed on the sardine site is an emphasis on interpreting visual information. While teaching kinematics (study of motion) this year I equally emphasized graphical, diagrammatic and words descriptions along with the more common algebraic models. One really neat things you can do when you learn about the same idea but in different “expressions” is ask students to “translate” a specific example in one case to all the others. This is really neat because it’s not something you can fake like plugging and chugging an equation. Instead you truly have to understand. Since my students generally are able to translate between one kinematics representation to another I think this was successful.

Finally the last thing I wanted to mention was how we applied our physics knowledge. This year I found about some of the work of the University of Minnesota’s Physics Education Research group. The group has produced a bunch of content rich physics problems. The problems are useful because they don’t fit into nice neat little boxes like standard text book problems do. They talk about everyday situations that appear simple on the surface but are actually quite challenging to solve. One of the problems I used asked about a jogger running around a lake trying to decide when he would meet another jogger. The problems include lots of information which students have to determine relevancy from. One student who literally crossed out the irrelevant information. Overall, I thought the content rich problems were successful because of the obvious level of thought most of my students put into the problem.

The Big Picture

Although the context of my class is obviously physics, I think that these ideas can be applied in any setting. I don’t see why peer instruction with whiteboards couldn’t be used in math or even history. Certainly requiring students to ask understanding, extension, and Socratic questions of each other could be done in any discipline. I also think that using different ways of representing knowledge could be applied to many subjects although the types of representations would obviously be different then the ones I mentioned. Finally I think adding intensive context to problems or assignments can be done in any field.

In short, I believe that working on good questions, multiple representations of knowledge and content rich application help students build information fluency.